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Abstract

We propose a variational approach to computing an optimal segmentation of a 3D shape for computing a union of

tight bounding volumes. Based on an affine invariant measure of e-tightness, the resemblance to ellipsoid, a novel

functional is formulated that governs an optimization process to obtain a partition with multiple components.

Refinement of segmentation is driven by application-specific error measures, so that the final bounding volume

meets pre-specified user requirement. We present examples to demonstrate the effectiveness of our method and

show that it works well for computing ellipsoidal bounding volumes as well as oriented bounding boxes.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling

1. Introduction

Complex objects are often approximated by simple prim-
itives so as to facilitate efficient geometric computa-
tions. For this purpose, bounding volumes have been
used very successfully for various applications, includ-
ing ray tracing, rendering, collision detection and robust
transmission of geometric data [Bou85, BK02, JTT01,
KV05] (Figure 1). There are efficient intersection tests
or proximity computations for commonly used bounding
volumes, such as spheres [Hub96], axis-aligned bound-
ing boxes (AABBs) [HKM95], oriented bounding boxes
(OBBs) [BCG∗96, GLM96], discrete-oriented polytopes (k-
DOPs) [KHM∗98] and ellipsoids [RB97, WCC∗04].

The efficiency of a bounding volume for a given object
is often defined as its bounding tightness to the object. To
compute a proper decomposition of an object into compo-
nents so that each can be bounded tightly by a bounding vol-
ume is a difficult task. Existing works on computing bound-
ing volumes mainly use hierarchical subdivision and enclose
each component with a bounding primitive. The conven-
tional top-down hierarchical approach, although fast, is lo-
cal and greedy, since there has been no consideration of an
optimization formulation and therefore the previous meth-
ods do not allow dynamic updates of different components
in an optimal manner. Consequently there is still much room

for improvement in bounding tightness. A notable exception
is the variational approach [WZS∗06] to computing sphere
bounding volumes; but it is difficult to extend the result to
other bounding volumes.

TOV(P) = 0.257
MOV(P) = 0.456

Figure 1: The dinopet with its bounding volume (33 ellip-

soids) automatically generated by our algorithm.

A variational approach to computing a partition of an
object often involves data clustering based on Lloyd it-
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eration [Llo82], a popular heuristic for k-means cluster-
ing [KMN∗02]. The most commonly used metric in this
framework is the Euclidean metric, which leads to the stan-
dard functional defining the Centroidal Voronoi Tessella-
tion (CVT) [DFG99]. The Euclidean metric is isotropic and
therefore cannot capture components with elongated shapes.
As we will see in detail at the end of Section 4, the direct use
of the anisotropic Mahalanobis (or elliptic) metric [GG89]
is problematic, due to its lack of variational foundation. In
this paper, we propose a fix to this problem by formulating a
new anisotropic metric based on an affine invariant concept
of e-tightness, the resemblance to ellipsoid. The new met-
ric is more suitable to the problem of computing an optimal
segmentation of a 3D object for the purpose of computing
a tight bounding volume. (We caution that such a segmen-
tation is not a generally “meaningful” segmentation, so the
segmentation result may not be completely suitable for other
purposes.)

The main contributions of our work can be summarized
as follows:

1. A new variational formulation is proposed based on

the e-tightness, a function we introduce to measure the
resemblance of a set to an ellipsoid. This functional is
used to determine an optimal partition of a 3D solid by
minimizing a weighted average of the e-tightness func-
tions of all components. We present theoretical justifica-

tion of the proposed anisotropic metric. Moreover, we
present effective computation schemes, and experimental
support to show the advantage of this new formulation.

2. Integrating the above optimization method with initial-
ization based on skeleton information and error-driven
refinement of partition, we have devised a complete and
robust algorithm for computing a tight bounding vol-

ume composed of the union of ellipsoids or oriented

bounding boxes for complex articulated 3D models, as
often used in computer animation.

2. Previous work

Shape approximation/segmentation. Vast amount of re-
search work has been conducted on shape approximation or
decomposition, for a wide range of applications, including
object recognition and geometry processing. Many ‘greedy’
approaches based on local search have been proposed, such
as hierarchical subdivision and region growing, which do not
accommodate dynamic incremental updates of a partition
in a global and optimal manner. Data clustering techniques,
e.g., fuzzy clustering [KT03], have also been applied directly
for shape segmentation. The variational approach has been
adapted in [CSAD04], which computes a piecewise planar
approximation of a surface by minimizing a functional char-
acterizing geometric errors. Note that these methods are only
for surface decomposition or approximation.

Bischoff and Kobbelt used ellipsoids to cover the in-
terior volume of an object [BK02]. The decomposition,

originally designed for surface reconstruction in robust ge-
ometry transmission, contains a larger number of ellip-
soids than necessary for tight bounding. Simari and Singh
achieved ellipsoidal representation of mesh surfaces using
the Lloyd method with a combination of metrics that con-
siders Euclidean radial distance, surface normals and cur-
vatures [SS05]. They also introduced a volume metric to
obtain ellipsoids approximating a 3D shape. Kalaiah and
Varshney proposed the use of k-means clustering with the
Mahalanobis distance for building a hierarchical Principle
Component Analysis (PCA) based representation for a point
set [KV05].

Bounding volume computation. Several geometric primi-
tives are commonly used as bounding volumes. The axis-
aligned bounding box (AABB) [HKM95] for a given ob-
ject is easy to construct, but it does not fit tightly for many
objects and it has to be recomputed if the orientation of
the object is changed. The oriented bounding box (OBB)
[BCG∗96, GLM96] can fit an object more tightly and the
class of OBBs is closed under any Euclidean transformation.
A hierarchy of OBBs, called OBB-tree or box-tree, is often
used to facilitate fast collision query. The splitting of a par-
ent OBB into two smaller components is done by bisecting
in the eigen-direction associated with the largest eigenvalue
of PCA.

A method for building a hierarchy of spheres, called
a sphere tree, is based on mid-axis surface computa-
tion [Hub96]. As an extension to this method, the adaptive
medial axis approximation (AMAA) [BO04] improves the
bounding efficiency by refining the segmentation iteratively
with a greedy approach. A bounding sphere set approxima-
tion for an object is computed using a variational approach
that minimizes the outside volume of the spheres [WZS∗06].

Statistical and data clustering techniques. Besides k-
means clustering, the Expectation Maximization (EM) al-
gorithm [Har58] is another general data clustering method,
which is widely used in image understanding or medical im-
age segmentation. Nevertheless, except for the PCA tech-
nique, most statistical and data clustering techniques have
not been applied in relation to computing bounding volumes.

3. Variational formulation

In this section we first define the e-tightness of a point set
in E

3, and then use it to formulate a functional whose min-
imizer defines an optimal volume segmentation of a given
object to facilitate the computation of a tight bounding vol-
ume.

Given a volume S ⊂ E
3, its covariance matrix is

C(S) =
∫

x∈S
(x−µ)(x−µ)T dσ

∫

x∈S
dσ

,

where dσ is the differential volume and µ =
∫

x∈S xdσ/
∫

x∈S dσ is the center of mass of S. We in-
troduce the Legendre ellipsoid of S, denoted by K(S), as
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K(S) = {x ∈ E
3 | xT L−1x≤ 1} [Lei98], where L = 5C(S).

The Legendre ellipsoid is a classical concept in mechanics
and is so defined that K(S)=S when S is an ellipsoid.
Note that the Legendre ellipsoid K(S), in general, is not a
bounding ellipsoid of S (Fig. 2a).

Clearly, the volume of K(S) is

vol(K(S)) = 4π
3

√

det(L). (1)

Then we define the e-tightness function of S to be

e(S) =
vol(K(S))

vol(S)
. (2)

In other words, the e-tightness of S is the ratio of the vol-
ume of its Legendre ellipsoid to the volume of S. Here we
suppose that S is a compact set of finite but nonzero volume.

We will see next that the e-tightness of a point set S char-
acterizes its deviation from the shape of an ellipsoid.

Lemma 1 The e-tightness value of any point set S ⊂ E
3 is

invariant under affine transformations.

Proof Denote an affine transformation by T : X = MX +
B, where M is a nonsingular matrix describing the linear
part of T . Let C(S) be the covariance matrix of S. Then
it is easy to verify that C(T (S)) = MC(S)MT . It fol-
lows that vol(K(T (S))) = det(M) · vol(K(S)). But, since
vol(T (S)) = det(M) · vol(S), by Eq. (2), we conclude that
e(T (S)) = e(S).

Lemma 2 e(S)≥ 1 for any set S of finite but non-zero vol-
ume in E

3. Furthermore, e(S) = 1 if and only if S is an
ellipsoid, assuming S is a compact set of finite but nonzero
volume.

Proof The lemma follows from the classical inequality

vol(K(S))≥ vol(S),

where the equality holds if and only if S is an ellip-
soid [GLYZ02].

Example 1. Consider the rectangular box R : [−a,a]×
[−b,b]× [−c,c]. Its volume is vol(R) = 8abc. Its covariance
matrix is C(R) = 8abc

3 diag(a2,b2,c2). Thus its Legendre el-
lipsoid K(R) is

(x,y,z) diag
(

3
5a2 , 3

5b2 , 3
5c2

)

(x,y,z)T ≤ 1.

Then vol(K(R)) = 4·53/2π
35/2 abc. So the e-tightness ofR is

e(R) =
vol(K(R))

vol(R)
= 53/2π

2·35/2 ≈ 1.127.

Due to affine invariance, all rectangular boxes have the same
e-tightness.

Next we use the e-tightness to define a functional to char-
acterize an optimal partition of a volume. Given a volume
S ⊂E

3, a k-partition of S is denoted byP = {Si}
k
i=1, where

k≥ 1,
⋃

Si = S and Si
⋂

S j = ∅ for any i, j with i 6= j. Con-

sequently, ∑
k
i=1 vol(Si) = vol(S). Then we define a func-

tional F(P) as the weighted average of the e-tightness func-
tions of all the components of P , given by

F(P) =
k

∑
i=1

vol(Si)

vol(S)
e(Si). (3)

The minimizer of F(P) characterizes a partition of S that
is optimal in terms of ellipsoidal decomposition, as summa-
rized by the following lemma.

Lemma 3 For any k-partition P = {Si}
k
i=1 of S ⊂ E

3, it
holds that F(P) ≥ 1. Furthermore, F(P) = 1 holds if and
only if every component Si of P is an ellipsoid.

Proof By Lemma 2, e(Si)≥ 1. Therefore,

F(P) =
k

∑
i=1

vol(Si)
vol(S)

e(Si)≥
k

∑
i=1

vol(Si)
vol(S)

= 1,

and F(P) = 1 if and only if e(Si) = 1 for every i, or, again
by Lemma 2, if and only if every Si is an ellipsoid.

An equivalent expression of F(P) is

F(P) = 1
vol(S)

k

∑
i=1

vol(K(Si)) =
20
√

5π/3
vol(S)

k

∑
i=1

√

det(C(Si)).

(4)
Hence, F(P) can be interpreted as the sum of the volumes
of the Legendre ellipsoids of all the components Si, normal-
ized by the total volume vol(S). Obviously, F(P) is also
invariant under affine transformations.

Lemma 3 states that if an object is composed of k disjoint
ellipsoids, a k-partition P can be found such that F(P) = 1,
i.e., each component of P is an ellipsoid. However, given an
arbitrary object S and a fixed k, such a partition in general
is not possible and so we have F(P) > 1 for any partition
P of S (Fig. 2). It is thus reasonable to say that the par-
tition attaining the minimum value of F(P) is statistically
the best decomposition, in the sense that the volume ratio
of the Legendre ellipsoids to the corresponding components
are minimized. Hence, the minimization of F(P) guides us
to obtain a segmentation that facilitates the computation of
bounding volumes, as will be explained in Section 5.

4. Minimization of F(P)

Given the complex expression of F(P) and its dependence
on the shape to be segmented, its minimization cannot be
expected to be straightforward. While there could be several
potential approaches to designing an effective algorithm, we
have focused on an iterative method that is in spirit simi-
lar to the Lloyd iteration. There are two ingredients to such a
method: initialization and iterative update. We shall first dis-
cuss our strategy for iterative update and then explain how
the initialization can be set up.

For the sake of computational efficiency, we assume a

c© The Eurographics Association and Blackwell Publishing 2007.
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(a) (b) (c)

Figure 2: Three partitions of a bowling pin. The value of

F(P) for (a), (b) and (c) are 1.2097, 1.1116 and 1.0129,

respectively. The components and the bounding ellipsoids

(grey) are shown on the left and the corresponding Legen-

dre ellipsoids (red) on the right.

discrete setting where the volume is given by a set of uni-
formly distributed points S = {xi}

n
i=1. Clearly, the concepts

introduced in Section 3 can naturally be carried over to this
discrete setting. For example, the covariance matrix of S is
given by

C(S) = 1
n

n

∑
i=1

(xi−µ)(xi−µ)T ,

where µ = 1
n ∑

n
i=1 xi is the center of mass of S.

We first use the case of a 2-partition to explain the basic
idea. Let the current partition be P = {S1,S2}. Then a key
issue is, according to the basic variational principle, how to
determine the perturbation imposed upon F(P) if one point
in S1 is reassigned to S2, or vice versa. Specifically, take
an arbitrary point x ∈ S1, and consider the new partition by
P ′ = {S′1,S

′
2}, where S′1 = S1 \ {x} and S′2 = S2

⋃

{x}.
Clearly, P is a minimizer if F(P) ≤ F(P ′) for any x. To
convert this into a computational scheme, we must be able
to compute the variation ∆F = F(P ′)−F(P). If ∆F < 0,
we accept P ′ as a better partition towards the minimization
of F(P).

In the following we will show that the evaluation of ∆F

leads naturally to an approximate algorithm that is similar to
the k-means clustering but with its Euclidean metric replaced
by the Mahalanobis metric weighted by e-tightness.

Proposition 4 The variation in F(P), for reassigning a point
x from S1 to S2 (S1,S2 ∈ P), is given by

∆F = α









[

(

m
m−1

)3
−

(

m
m−1

)3
d(x,S1)

m−1 −1

]

det(C(S1))

(

m
m−1

) 3
2

√

(

1− d(x,S1)
m−1

)

det(C(S1))+
√

det(C(S1))

+

[

(

n
n+1

)3
+

(

n
n+1

)3
d(x,S2)

n+1 −1

]

det(C(S2))

(

n
n+1

) 3
2

√

(

1 + d(x,S2)
n+1

)

det(C(S2))+
√

det(C(S2))









(5)

where m = |S1|, n = |S2|, α =
20
√

5π/3
vol(S)

, and

d(x,Si) = (x−µi)
T

C(Si)
−1(x−µi), i = 1,2,

are the Mahalanobis distances from x to the centres µ1 and
µ2 of S1 and S2, respectively.

Proof The derivation is straightforward but lengthy, so is
omitted due to space limitation.

When m = |S1| and n = |S2| are sufficiently large, it is
straightforward to obtain the following approximation:

∆F ≈∆F̃ ≡α





d(x,S2)
√

det
(

C(S2)
)

2(n + 1)
−

d(x,S1)
√

det
(

C(S1)
)

2(m−1)



 .

We now consider the case of a k-partition of a volume S.
Given a point x ∈ Si, let ∆F̃i, j denote the variation in F due
to the reassignment of x to S j. Then, for sufficiently large
|Si| and

∣

∣S j

∣

∣, we have

∆F̃i, j = α





d(x,S j)
√

det
(

C(S j)
)

2(|S j|+ 1)
−

d(x,Si)
√

det
(

C(Si)
)

2(|Si|−1)





≈ γ
(

e(S j)d(x,S j)− e(Si)d(x,Si)
)

, (6)

where d(x,Si) is the Mahalanobis distance from x to the
center of Si and γ is a positive constant. Here we have used
the definition of e-tightness by Eqn. (1) and (2), and the
approximation |Si| ≈ vol(Si), since the sampled points in
S are sufficiently dense and uniformly distributed. Eqn. (6)
implies that, approximately, a weighted Mahalanobis metric
(i.e., by the e-tightness) can be used in the k-means frame-
work to optimize the functional F(P).

Define h j(x) = e(S j)d(x,S j) for a point x ∈ S. A smaller
value of h j(x) gives a smaller ∆F̃i, j , which favors reassign-
ing x to S j . Note that x ∈ Si is reassigned to S` only if ∆F̃i,`

< 0 and ∆F̃i,` < ∆F̃i, j for all j 6= i, `. By Eqn. (6), this is
equivalent to assigning x ∈ Si to S` if h`(x) ≤ hi(x) for all
i 6= `. For better efficiency and maintaining component con-
nectivity, we use a flooding scheme as in [CSAD04] (as-
suming 8-neighbor connectivity) to compute a k-partition by
minimizing the functional F(P), as shown in the following
algorithm flow.

ALGORITHM: Minimizing F(P) for a k-partition of a

volume S
INPUT: An initial k-partition P = {Si}

k
i=1 of S

STEPS:

1. Pcurr←P
2. For each point x ∈ S, assign x to S j with h j(x) being the

minimum among all hi(x), i = 1, . . . ,k. Distortion mini-
mizing flooding is used in the assignment process.

3. If no point has been reassigned, goto step 6.
4. Let Pnew be the new partition formed in step 2. Evaluate

F(Pnew) using Eqn. (4).

c© The Eurographics Association and Blackwell Publishing 2007.
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(a) (b) (c)

Figure 3: A 2-partition of a 2D shape using different seg-

mentation schemes: (a) k-means clustering with Euclidean

metric; (b) k-means clustering with Mahalanobis metric;

and (c) our scheme of minimizing F(P).

5. If F(Pnew) < F(Pcurr),
Pcurr←Pnew, goto step 2.

6. Randomly pick a boundary point y. Let y ∈ Si and let
{S j} be the set of components that are adjacent to y.
Evaluate ∆Fi, j as in Eqn. (5).
If ∆Fi, j < 0 for any S j,

reassign y to S j and goto step 2.
If all boundary points of all components cannot be reas-
signed,

output F(Pcurr) as the optimized k-partition of S.

Step 6 above serves to check whether the re-grouping per-
formed in step 2 is acceptable. This is needed because (a)
the criterion ∆F̃ < 0 is only an approximate one; and (b) for
efficiency reasons, the covariance matrices C(Si) defining
hi(x) are not updated after moving each individual point—
they are updated only at the beginning of each iteration, i.e.,
after Pnew of the last round is formed. All these affect the
accuracy and therefore, correctness, of this regrouping step.
Hence, in step 6, we seek to perturb the boundary points of
the components in a partition, and see if the reassignment of
any of these boundary points can result in a ∆F < 0, which
in turn will lead to a new partition with smaller F(P).

A Centroidal Voronoi Tessellation (CVT) of k compo-
nents of S is used as the initial k-partition for the input of
the above algorithm. This partition is computed using the k-
means clustering based on Euclidean distance with the flood-
ing scheme to ensure component connectivity. The initial k-
partition can also be obtained by splitting one component of
an optimal (k−1)-partition.

We close this section by giving a geometric interpreta-
tion of the Mahalanobis metric in the k-means clustering.
Figure 3 shows the 2-partitions of a 2D shape obtained by
different schemes, all starting from two reasonably good ini-
tial seed points. Since our scheme is closely related to the
k-means clustering using the Mahalanobis metric, we expect
our method to have similar behavior (Figure 3(c)). Our tests
show that the minimization of F(P) is more robust in global

convergence as it is properly derived from sound variational
principles. In contrast, the k-means clustering using the Ma-
halanobis metric has the peculiar property [WMSX97] that
the functional, G(P) = ∑

k
i=1 ∑x∈Si

(x− µi)
TC(Si)

−1(x−
µi), obtained by replacing the Euclidean metric with the
Mahalanobis metric in the well known functional for the
CVT [DFG99], is actually a constant function; that is, it is in-
dependent of the number of components in a partition or the
manner of partition. This lack of clear variational interpreta-
tion is the major obstacle to using the Mahalanobis metric.

5. Complete algorithm

The goal of our complete algorithm for bounding volume
computation is to segment a 3D shape into multiple com-
ponents, so that each component is enclosed tightly by a
bounding volume. Intuitively, one could think of minimiz-
ing the bounding volumes of the components as an objective
function to seek an optimal partition; but that would lead to a
functional without explicit expression, making its optimiza-
tion intractable. Hence, the algorithm in Section 4 comes
into place by providing a k-partition that minimizes F(P),
for a fixed k, as defined in Eqn. (3). The global optimization
is therefore driven so that each component tends to resem-
ble the shape of an ellipsoid. However, minimizing F(P)
alone is not sufficient for producing a good segmentation for
bounding volume computation, due to the following issues.

1. The minimizer of F(P) may be over-optimistic. Consider
the case where a component Si is an ellipsoid with a long
but thin stick attached to it. Since the thin stick is statisti-
cally negligible when computing the covariance matrix of
Si, by Lemma 2, e(Si)≈ 1, which suggests a good fitting.
However, since the bounding volume is much larger than
its Legendre ellipsoid and contains much empty space, Si

should be further segmented for a tighter bounding.
2. The minimizer of F(P) may be over-conservative. Con-

sider a rectangular blockR (with e(R)≈ 1.127; see Ex-
ample 1 in Section 3). If it is segmented into two smaller
rectangular boxes (which have the same e-tightness
1.127, by Lemma 1), then F(P) is still 1.127, indicating
no improvement. However, due to overlapping between
the Legendre ellipsoids of the two smaller boxes, the ac-
tual bounding tightness has become better if bounding
volumes are computed based on this 2-partition.

Hence, our complete algorithm consists of an iteration of
two stages. Firstly, we obtain an optimal k-partition P that
minimizes F(P). Next, we validate P by considering some
errors measuring the empty space inside a bounding volume,
and refine the segmentation by increasing k, if necessary.

Let BV(Si) denote the bounding volume of Si computed
by our algorithm. The global error, TOV(P), measures the
normalized total outside volume, i.e., the space outside S but

c© The Eurographics Association and Blackwell Publishing 2007.
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inside the union of all bounding primitives, and is defined as

TOV(P) =
vol

(
⋃

iBV(Si)\S
)

vol(S)
.

The local outside volume of a component Si, denoted by
OV(P,Si), measures the normalized volume of the space
outside S but inside the bounding volume of Si, and is de-
fined as

OV(P,Si) =
vol

(

BV(Si)\S
)

vol(Si)
.

We then define the maximum local outside volume
MOV(P) = maxi{OV(P,Si)}, i.e., the maximum local er-
ror over all the components of a partition. This volume is
evaluated by counting the number of sample points in the
regions in question.

We iteratively refine a partition of S by increasing the
number of components by one at each step, until TOV(P)
and MOV(P) are smaller than two pre-defined tolerances
σG and σL, respectively (Figure 4). The flow of the complete
algorithm is as follows.

ALGORITHM: Computing the bounding volumes of a

3D shape

INPUT: A 3D shape S and two tolerances σG and σL for
the global and the local error measures, respectively.

STEPS:

1. Sample S by a set of uniformly distributed points.
2. Pick a random seed point and form a 1-partition of S.

k← 1.
3. Obtain an optimized k-partition, Pk, of S using the algo-

rithm in Section 4 by minimizing F(Pk).
4. Compute the bounding volumes BV(Si). Evaluate

TOV(Pk) and MOV(Pk).
5. If TOV(Pk) < σG and MOV(Pk) < σL,

goto step 7.
6. If TOV(Pk) < TOV(Pk−1),

split S j having the maximum OV(Pk,S j)
k← k +1 and go to step 3.

Else
backtrack to Pk−1 and find the component Sb

with the next largest local outside volume.
If no Sb can be found, i.e., all components in
Pk−1 have been subject to split but failed,

split S j having the maximum OV(Pk,S j)
k← k +1 and go to step 3.

Else
split Sb and go to step 3.

7. Perform components merge.
8. Output the set of bounding volumes BV(Si).

5.1. Splitting components for partition refinement

Step 6 of the above algorithm is a refinement step: we iden-
tify the component S j ∈ P

k with the maximum local error
and split it into two, and target at reducing both the total out-
side volume and the maximum local outside volume. A split
is done by adding a new seed point which is farthest from
the centre of S j; then the points in S j are regrouped into
two components using our optimization scheme in Section
4. Such a split will lead to a minimization of a new partition
Pk+1. However, in rare cases the optimized partition after a
split may have a larger total outside volume than the previ-
ous one. In this case, we backtrack to the old partition Pk

and select the component with the second largest local out-
side volume for the next splitting. If all components have
been attempted but yet the total outside volume cannot be
reduced, then we will proceed to split the component with
the largest local outside volume which would lead to an in-
crease in the total outside volume. This situation happens
rarely because in most cases a split will result in two tighter
bounding volumes than the old one. Our tests show that even
a backtrack occurs very infrequently.

5.2. Merging components

In a post-processing step of our algorithm, to prevent over-
segmentation, we seek to reduce the final number of compo-
nents without incurring an increase in the total outside vol-
ume. We determine the pair of adjacent components whose
merging will lead to the largest decrease in the total outside
volume. Merging is then performed for such a pair, and con-
tinues iteratively until no possible merge can be identified.

5.3. Computing bounding volumes

Once a 3D volume has been segmented into multiple com-
ponents, the next step is to compute the bounding volume
for each component. An approximate minimum-volume en-
closing ellipsoid of a component can be computed using
CGAL [FGH∗06] and used as a bounding ellipsoid; how-
ever, the method is computationally expensive (almost 6 sec-
onds for 10k points). Hence, for efficiency reasons, during
the intermediate steps of computing the bounding volumes
for evaluating the error measures, we simply apply uniform
scalings to the Legendre ellipsoids to bound their corre-
sponding components. Only the final bounding ellipsoids for
output will be computed by CGAL. We also consider the use
of OBB [GLM96] as a bounding volume, since the Legen-
dre ellipsoid provides the same information as by a PCA.
Figure 5 shows that either OBBs or ellipsoids can be a bet-
ter choice of bounding volumes, depending on the type of
the model under consideration. While synthetic objects are
better bounded by OBBs, our experiments show that objects
of organic forms, such as human characters, are bounded by
ellipsoids more efficiently.

Our segmentation scheme can be used to set up a bound-
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TOV(P) = 2.155
MOV(P) = 2.155

k = 1

→

TOV(P) = 1.158
MOV(P) = 1.136

k = 2

→ ·· · →

TOV(P) = 0.299
MOV(P) = 0.498

k = 13

→

TOV(P) = 0.263
MOV(P) = 0.340

k = 11

→

TOV(P) = 0.239
MOV(P) = 0.340

k = 10

Splitting components Merging components

Figure 4: The process of segmenting and computing the bounding volume of a teddy bear model, starting from one component

that ends at a 10-partition. The tolerances used are σG = 0.3, σL = 0.5.

(a) 15 OBBs, TOV(P) = 0.336 (b) 15 ellipsoids, TOV(P) = 0.575

(c) 12 OBBs, TOV(P) = 0.627 (d) 12 ellipsoids, TOV(P) = 0.396

Figure 5: OBBs and ellipsoids achieve different degrees of

tightness for different types of objects. The chair ((a) & (b))

is bounded more tightly by OBBs while the hand ((c) & (d))

is bounded more tightly by ellipsoids.

ing volume hierarchy. We first obtain a k-partition (and
hence k bounding primitives) to attain a sufficiently tight
bounding. We then build the hierarchy bottom up; the com-
ponents of two adjacent bounding volumes are grouped and
are enclosed tightly by a parent bounding volume. A greedy
approach is used where the grouping is first performed on the
pair of ellipsoids that results in the smallest parent bounding
volume. If needed, the k-partition, which comprises the leave
nodes of the tree, can be further split in a top-down manner
to obtain lower levels of bounding. Here, splitting of parent
bounding volume is determined by a 2-partition optimization
of its component.

5.4. Other error measures

The above volume-based error measures used to govern seg-
mentation refinement can also be replaced by other kinds
of error measurement, depending on specific applications.
While the volume-based errors are relevant to collision
detection, restricting the Hausdorff distance between the
bounding volume B and the object boundary O can be use-
ful for shadow computation, for example, since it provides a
more perception-sensitive measure. Different error measures
can be used in combination. In this case, the segmentation re-
finement terminates when the thresholds for all the metrics
are satisfied.

6. Implementation issues

6.1. Segmentation for skeleton-based volumes

Extracting the skeleton of an object, especially an articulated
object as commonly used in animation, has been well stud-
ied. Any approximate skeletal structure is good enough as
an initial input to our algorithm. We assign a seed point to
each link that naturally defines a component in the partition.
A CVT is used as an initial partition for the optimization as
described in Section 4 for obtaining a k-partition with fixed
k. This saves much computation time that would otherwise
be spent on building the k-partition from a single initial com-
ponent (Figure 6).

6.2. Efficiency vs. quality

The computational efficiency depends highly on the number
of samples taken from the 3D volume. While an overly high
sampling rate leads to slow computation, a sparse sampling
could easily induce errors to the bounding volumes, since
fine parts of an input object, often important as features,
may receive too few sample points. We use two techniques,
multi-grid and adaptive sampling, in a preprocessing step to
balance segmentation quality and computational time.

Multi-grid. We apply a discrete multi-grid technique where
a progressively finer sampling is used as the Lloyd iterations
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Figure 6: Segmentation of a 3D shape with skeleton. (Left)

Initial fitting with 22 bounding ellipsoids (TOV(P) = 0.434,

MOV(P) = 1.175); (right) Segmentation output with 30

bounding ellipsoids using σG = 0.3 and σL = 0.4 (TOV(P) =

0.298, MOV(P) = 0.336).

Figure 7: More points are sampled in regions of small fea-

tures, e.g., the fingers, so that they can be bounded tightly.

proceed. A pre-computed multiresolution point sampling of
the volume is maintained. The results of an optimized parti-
tioning of a coarse level is transferred to the next finer level
by copying the assignments of sample points to their cor-
responding points at the finer grid, thus providing a good
initialization to facilitate faster convergence.

Adaptive sampling. Each sample point is associated with
its distance to the shape boundary by applying a medial-
axis transform [ACK01] at a preprocessing step. Whenever
an optimized partition is computed, we evaluate the aver-
age distance to the shape boundary over all points in each
component. An average distance smaller than a predefined
threshold indicates a possible feature and therefore a denser
sampling is used. Each sample point then carries a weight
proportional to the volume it represents, so that a point in a
more densely sampled region contributes less in the Legen-
dre ellipsoids computations and error evaluations. Figure 7
shows a segmentation of a human character with each finger
properly and tightly bounded by an ellipsoid using adaptive
sampling.

7. Experimental results and discussions

Figure 8 shows the 20-partitions of a human model (15K
sample points) obtained by a CVT (1.8 seconds) and our

TOV(P) = 0.501, MOV(P) = 2.348 TOV(P) = 0.369, MOV(P) = 1.222

Figure 8: Segmentation of a human character obtained by

(left) the CVT method; and (right) our algorithm. Both con-

tain 20 components, and our method can automatically de-

compose the limbs properly.

method (4 seconds with optimization on the partition only,
without any splitting or merging of components). The CVT
method generates components corresponding to the Voronoi
cells and hence cannot capture some elongated shapes espe-
cially at the limbs. Our algorithm, on the other hand, shows
superiority over the commonly used CVT method, due to
the anisotropic nature in the metrics that we use. There is a
significant difference between the anisotropy of our method
and that of some other anisotropic data clustering methods
which use a fixed Riemannian metric; the anisotropy used in
this paper varies as the partition is improved progressively.

Figure 9 shows the results of applying our algorithm to
some complex models. The running time of our algorithm
depends on several factors, such as the number of sample
points, the type of bounding volumes, and the user-specified
tolerances that control the degree of segmentation refine-
ment. With 20K sample points, our algorithm takes 2 min-
utes to generate the 33 bounding ellipsoids for the dinopet
as shown in Figure 1. The use of skeletal information results
in significant speedup—the bounding ellipsoids for the horse
(20K points) (Figure 6) are computed in 30 seconds only. All
timing results are taken on a 1.66GHz Pentium IV computer
with 1GB RAM.

8. Conclusion

We presented a novel algorithm in computing a segmenta-
tion for bounding volume computation based on a new func-
tional, for which we provided theoretical justifications. Our
experimental results show that the proposed algorithm can
produce a shape decomposition that is more shape adaptive,
as compared to segmentation using k-means clustering with
the Euclidean metric. Combined with other error measure,
such as the total outside volume, our algorithm is capable of
producing tight bounding volumes.

We point out that the formulation of the functional F(P)
in Eq.(3) is not the only way of utilizing the concept of e-
tightness. Other formulations and their behaviors remain to
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TOV(P) = 0.262, MOV(P) = 0.436
(a) 31 ellipsoids

TOV(P) = 0.350, MOV(P) = 0.440
(b) 33 ellipsoids

TOV(P) = 0.261, MOV(P) = 0.428
(c) 27 ellipsoids

TOV(P) = 0.292, MOV(P) = 0.497
(d) 38 ellipsoids

TOV(P) = 0.486, MOV(P) = 0.897
(e) 18 OBBs

TOV(P) = 0.380, MOV(P) = 1.302
(f) 16 OBBs

Figure 9: Results of our algorithm on different models.

be studied. We also wish to study the effect of using addi-
tional local geometric features, such as surface curvature, for
a better control in the resulting partition. Finally, the feasi-
bility of adopting our algorithm for computing the bounding
volume of dynamic or deformable objects will be explored
in future work.
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